

TWO IRIDOIDES FROM *VIBURNUM LANTANA*

NEDYALKA HANDJIEVA, ISKRA BARANOVSKA,* BOZHANA MIKOVA and SIMEON POPOV†

Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria

(Received in revised form 24 February 1988)

Key Word Index—*Viburnum lantana*; Caprifoliaceae; iridoids; 2'-O-acetyl dihydropenstemonide; 2'-O-acetyl pteroside.

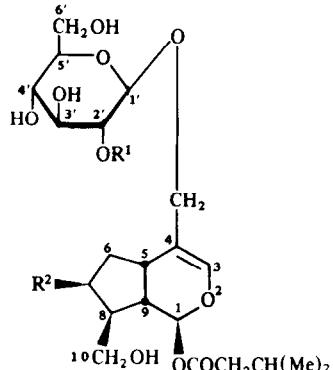
Abstract—Two new iridoids with an isovaleroyl group at C-1 and a sugar moiety at C-11 have been isolated from the bark of *Viburnum lantana*. Their structures were characterized as 2'-O-acetyl dihydropenstemonide and 2'-O-acetyl pteroside by spectroscopic and chemical means.

INTRODUCTION

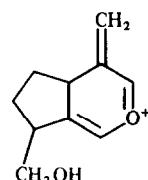
Viburnum species are used in folk and official medicine as uterotonic, chemostatic, sedative and diuretic drugs [1]. They are a source of iridoid compounds [2-10], two new ones of which we have isolated from the previously unstudied species *V. lantana*.

RESULTS AND DISCUSSION

Compounds **1** and **2** were isolated from the dried bark of *V. lantana*. Both compounds after heating with dilute hydrochloric acid produced a dark resinous product, typical for iridoids, and afforded glucose [TLC and GC (silylated derivative)].

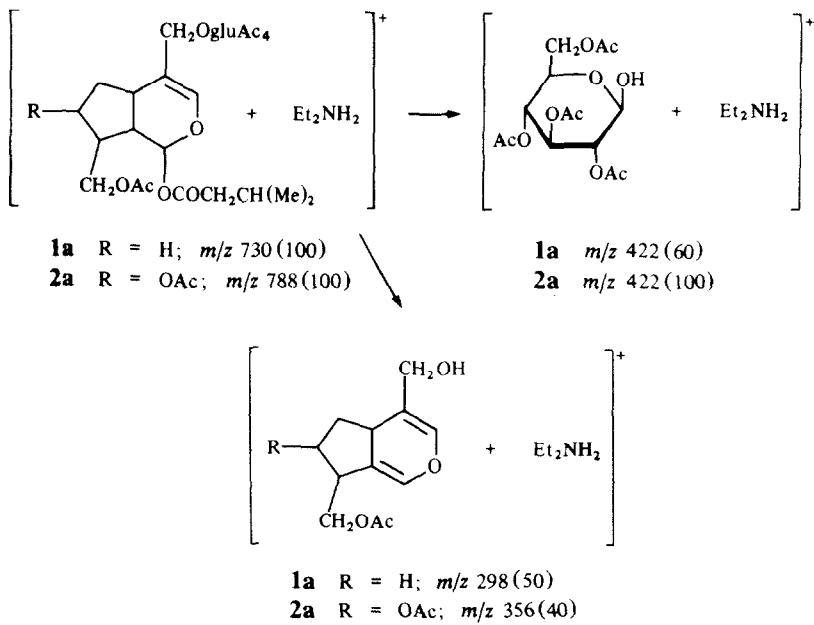

Compound **1** exhibited IR absorption bands at 3450 (hydroxyl groups), 1730-1750 (ester group), 1670 (double bond) and 1250 cm^{-1} (acetoxy group). Its ^1H and ^{13}C NMR spectra were similar to those of dihydropenstemonide (**3**) [4,11] with the exception of the signals for one acetoxy group, indicating that **1** was a monoacetate of **3** (Table 1).

Acetylation of **1** provided a penta-acetate (**1a**), the M_r mass (656) of which as determined by CIMS (Et_2NH) [12, 13] showed **1** to have a M_r of 488. The presence of two intense peaks at m/z 422 (60%) [$\text{gluAc}_4 + 74$]⁺ and at 298 (50%) [$\text{M} + \text{Et}_2\text{NH}_2 - 102 - 330$]⁺ characterized the sugar and the aglycone parts (Scheme 1).


Furthermore, comparison of the ^{13}C NMR spectra of **1a** and dihydropenstemonide penta-acetate **3a** showed their common identity (Table 2). The site of esterification was established by comparison of the ^1H and ^{13}C NMR spectra of **1** with those of **3**. The ^1H NMR spectrum of **1** indicated that the acetoxy residue was linked to the glucose moiety. No shift of the methylene protons at C-10 (δ 3.53) was observed while the H-2' signal showed a considerable paramagnetic shift (δ 4.70 cf δ 3.18 for **3**)

(Table 1). The C-2' position of the acetoxy group was supported also by the low field shifts of the C-1' and C-3' signals in the ^{13}C NMR spectrum of **1** compared to those of dihydropenstemonide (**3**).

The EIMS (12 eV) of **1** was in agreement with the proposed structure of the aglycone. Signals with m/z 165 and 164 being due to the aglycone of **1** after elimination of isovaleric acid and either water or a hydroxyl group. The


	R ¹	R ²
1	Ac	H
2	Ac	OH
3	H	H
4	H	OH

5
 m/z 165(85)

*Present address: Institute for foreign students, Sofia, Bulgaria.

†Author to whom correspondence should be addressed.

Scheme 1. CIMS (Et₂NH) fragmentation of compounds **1a** and **2a**.Table 1. ¹H NMR data of

H	1*	3†	1a‡
1	5.99 <i>d</i> (4.5)	5.96 <i>d</i> (4.6)	5.94 <i>d</i> (5.5)
3	6.32 <i>br s</i>	6.37 <i>br s</i>	6.32 <i>d</i> (1.5)
5	2.70 <i>m</i> <i>q-habitus</i>	2.82 <i>m</i> <i>q-habitus</i>	2.67 <i>m</i> <i>q-habitus</i>
6	1.82 <i>m</i> 1.69 <i>m</i>	1.39 <i>m</i> 1.70 <i>m</i>	1.6 <i>m</i> 1.7–2.1 <i>m</i>
7	1.9–2.2 <i>m</i> 1.40 <i>m</i>	1.90–2.02 <i>m</i> 1.82 <i>m</i>	1.7–2.1 <i>m</i> 1.34 <i>m</i>
8	1.9–2.2 <i>m</i>	1.90–2.02 <i>m</i>	2.17 <i>m</i>
9	1.9–2.2 <i>m</i>	1.90–2.02 <i>m</i>	2.10 <i>m</i>
10	3.53 <i>d</i> (6.0)	3.52 <i>d</i> (6.0)	4.04 <i>d</i> (7.0)
11	4.21 <i>d</i> AB (12.0) 4.04 <i>d</i> AB (12.0)	4.16 <i>d</i> AB centre (11.5)	4.04 <i>d</i> AB (12.0) 4.20 <i>d</i> AB (12.0)
1'	4.46 <i>d</i> (8.0)	4.28 <i>d</i> (7.7)	4.54 <i>d</i> (8.0)
2'	4.70 <i>dd</i> (8.0; 9.0)	3.18 <i>dd</i> (7.8; 9.1)	5.02 <i>dd</i> (8.0; 9.5)
3'	3.53 <i>t</i> (9.0)		5.22 <i>t</i> (9.5)
4'	3.35		5.08 <i>t</i> (9.5)
5'	3.28		3.69 <i>m</i>
6'	3.88 <i>dd</i> AB from ABX (12.0; 2.2) 3.68 <i>dd</i> AB from ABX (12.0; 5.5)	3.86 AB from ABX (11.7; 1.8) 3.65 AB from ABX (11.7; 5.4)	4.26 <i>dd</i> AB from ABX (11.5; 5.0) 4.14 <i>dd</i> AB from ABX (11.5; 2.5)
MeCO-isovaleroyl	2.1 <i>s</i>		
-CH<	1.9–2.2 <i>m</i>	2.07	1.7–2.1 <i>m</i>
-CH ₂ -	2.23 <i>d</i>	2.22	2.25 <i>d</i>
(CH ₃) ₂	0.96 <i>d</i>	0.96 <i>d</i>	0.98 <i>d</i>

***1** and **2** in CD₃OD, 250 MHz.†**3** in CD₃OD, 400 MHz, ref. [11].‡**1a** and **2a** in CDCl₃, 250 MHz.§**4a** in CDCl₃, 100 Hz, ref. [15].

||Partially covered by the solvent signal.

presence of the isovaleroyl and acetyl moieties in the molecule was shown by the intense peaks at m/z 85, 57, 60 and 43 in the EIMS (70 eV) of 1.

The stereochemistry at C-8 of compound 1 (C-9, δ 45.0; C-10, 66.6; H-1, 5.96) was studied by ^{13}C NMR [14] and by comparison of the ^{13}C and ^1H NMR data with those of dihydropenstemide 3 (C-9, δ 44.95; C-10, 66.48; H-1, 5.96) [11] and 8-epidihydropenstemide (C-9, δ 42.71; C-10, 64.29; H-1, 6.26) [11]. All the data were consistent with an 8- β -CH₂OH substituent. Thus compound 1 was identified as 2'-*O*-acetyl dihydropenstemide.

On the basis of decoupling experiments on the ^1H NMR spectrum of compound 1, we found that the published shifts for H-6 and H-7 in the ^1H NMR spectrum of dihydropenstemide [11] should be changed as follows: H-6, δ 1.69 and 1.82; H-7, δ 1.4 and 1.9–2.2.

Compound 2 had a similar IR spectrum to that of compound 1 (3450, 1730–1750, 1670, 1260 cm^{-1}). Acetylation afforded a hexa-acetate (2a) with a M_r of 714 (CIMS with Et₂NH). The ^1H NMR spectrum of 2 showed the presence of one acetoxy group and hence a M_r of 504 for 2. The MS fragmentation of compound 2 resembled that of the penta-acetate of 2'-*O*-acetyl dihydropenstemide (1a) (Scheme 1 and Experimental).

Comparison of the ^{13}C NMR data of the hexa-acetate of compound 2 and an authentic sample of patrinoside hexa-acetate (4a) [4, 14, 15] confirmed the identity of

both compounds (Table 2). As with 2'-*O*-acetyl dihydropenstemide (1), the ^1H NMR data showed that the acetoxy group in compound 2 was not attached at the aglycone, i.e. H-10 and H-7 signals unchanged (Table 1). A 2'-location of the acetoxy group in the glucosidic moiety was determined on the basis of the same considerations as in the case of compound 1 (Tables 1 and 2).

The similar ^1H and ^{13}C NMR spectra of compound 2 and patrinoside (4) proved that the former contained 7- β -OH and 8- β -CH₂OH groups. Compound 2 was thus identified as 2'-*O*-acetyl patrinoside.

EXPERIMENTAL

^1H NMR (250 MHz) and ^{13}C NMR (62.9 MHz): solvents as indicated with TMS as int. standard (accuracy ± 0.25 Hz).

Extraction and isolation. Dried powdered bark of *Viburnum lantana* (750 g) from Mount Vitosha was extracted with 5 l CHCl₃ and 3 \times 5 l MeOH. The MeOH extracts were bulked and the solvent removed to give a residue (42 g) which was dissolved in H₂O and successively extracted with Et₂O, EtOAc and BuOH. The EtOAc extract was concd to dryness to give a residue (7 g) which was applied to a silica gel column. Elution with CHCl₃–MeOH (8:1) with increasing MeOH content gave impure compounds 1 and 2, which were repeatedly chromatographed until pure.

compounds 1–3, 1a, 2a and 4a

2*	2a†	4a§
5.93 <i>d</i> (5.0)	5.92 <i>d</i> (5.3)	5.86 <i>d</i> (6)
6.31 <i>br s</i>	6.33 <i>d</i> (1.5)	6.25 <i>d</i> (1.5)
2.89 <i>m q-habitus</i>	2.88 <i>m q-habitus</i>	2.7–3.2 <i>m</i>
1.80 <i>m</i>	1.9 <i>m</i>	2.2
1.97 <i>m</i>	1.9–2.3 <i>m</i>	
4.31 <i>m</i>	5.27 <i>m</i>	
1.90–2.10 <i>m</i>	1.9–2.3 <i>m</i>	
2.18 <i>m</i>	1.9–2.3 <i>m</i>	
3.83 <i>dd AB</i> from ABX (10.0; 6.0)	4.18 <i>m</i>	4.05–4.20
3.71 <i>dd AB</i> from ABX (10.0; 7.5)		
4.22 <i>d</i> (11.0)	4.20 <i>d AB</i> (11.5)	
4.05 <i>d</i> (11.0)	4.06 <i>d AB</i> (11.5)	
4.46 <i>d</i>	4.52 <i>d</i> (8.0)	
4.71 <i>dd</i> (11.0)	5.02 <i>dd</i> (8.0; 9.5)	
3.52 <i>t</i> (9.0)	5.21 <i>t</i> (9.5)	
3.35	5.05 <i>t</i> (9.5)	
3.27	3.70 <i>m</i>	
3.88 <i>dd AB</i> from ABX (12.0; 2.0)	4.26 <i>dd ABX</i> (11.0; 5.0)	
3.67 <i>dd AB</i> from ABX (12.0; 4.5)	4.15 <i>dd AB</i> (11.0; 2.5)	
2.10 <i>s</i>	from ABX	
1.9–2.1 <i>m</i>	1.9–2.3	1.95–2.10
2.24 <i>d</i>	2.27	
0.96 <i>d</i>	0.98 <i>d</i>	0.96 <i>d</i> (6)

Table 2. ^{13}C NMR data of compounds **1–4** and **1a–4a**

C	1*	3†	1a‡	3a§	2*	4¶	2a‡	4a
1	92.9	93.2	91.4	91.0	93.5	93.5	91.3	90.8
3	140.7	140.6	140.4	140.0	140.1	139.9	140.1	139.7
4	114.5	115.2	112.2	111.7	116.2	115.7	112.7	112.2
5	36.8	36.9	36.1	35.6	34.0	33.4	33.1	32.7
6	30.6	30.9	30.1	29.5	41.0	39.9	37.5	37.0
7	28.0	28.1	27.4	26.9	73.5	72.3	74.1	73.5
8	44.2	43.9	39.1	38.6	49.0	48.1	43.2	42.7
9	45.0	45.0	43.8	43.3	41.0	41.5	42.2	41.7
10	66.6	66.5	67.3	66.8	62.3	61.5	62.5	62.0
11	69.6	69.6	69.0	68.5	69.8	69.6	68.8	68.8
1'	102.2	103.5	99.3	98.8	101.3	102.0	99.2	98.6
2'	75.4	75.2	71.4	70.9	75.5	73.9	71.4	70.8
3'	76.3	77.9	72.0	71.4	76.3	76.6	72.0	71.5
4'	71.9	71.8	68.0	68.0	71.9	70.4	68.5	68.0
5'	78.1	78.2	73.0	72.5	78.2	76.6	73.0	72.5
6'	62.8	62.9	62.0	61.5	62.8	61.5	62.0	61.5
isovaleroyl								
>C=O	173.4	173.5	171.9		173.5		171.8	
$-\text{CH}_2-$	44.2	44.2	43.3		44.3		43.2	
$-\text{CH}^<$	26.8	26.8	25.6		26.9		25.6	
$-\text{Me} \times 2$	22.6	22.6	22.3		22.7		22.3	
acetyl								
>C=O	171.7				172.0			
Me	21.7				21.2			

1 and **2** in CD_3OD , 62.9 MHz†**3** in CD_3OD , 100 MHz, ref. 11‡**1a** and **2a** in CDCl_3 , 62.9 MHz§**3a** in CDCl_3 , 22.6 MHz, ref. 4.¶**4** in D_2O , 22.6 MHz, ref. 14.||**4a** in CDCl_3 , 22.6 MHz, ref. 14.

2'-O-Acetyl dihydropatrinoside (1). Amorphous powder (94 mg). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 212; IR $\nu_{\text{max}}^{\text{film}}$ cm⁻¹: 3450, 1730–1750, 1670, 1375, 1250, 1090, 765; ^1H NMR (250 MHz, CD_3OD , decoupling experiments), see Table 1; ^{13}C NMR (62.9 MHz, CD_3OD , DEPT technique), see Table 2; EIMS (70 eV), m/z (rel. int.): 207 (10), 206 (12), 165 (40) [$\text{M} - 102 - 221$]⁺, 164 (50) [$\text{M} - 102 - 222$]⁺, 85 (80), 60 (45), 57 (65), 43 (100); EIMS (12 eV): 249 (11) [$\text{M} - 222 - 17$]⁺, 207 (20), 205 (22) [$221 - 17$]⁺, 165 (85) [$\text{M} - 102 - 221$]⁺, 164 (55), 85 (70), 60 (30), 57 (60), 43 (20).

Acetylation of 1. Compound **1** (52 mg) was treated with pyridine– Ac_2O in the usual manner. The resultant acetate was purified by silica gel CC to give 45 mg of the pentaacetate **1a**, $\text{C}_{31}\text{H}_{44}\text{O}_{15}$, mp 97–99°. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1750, 1670, 1375, 1250, 1050, 765; ^1H NMR (250 MHz, CDCl_3), see Table 1. ^{13}C NMR (62.9 MHz, CDCl_3), see Table 2. CIMS (Et_2NH), m/z (rel. int.): 730 (100) [$\text{M} + 74$]⁺, 422 (60) [$348 + 74$]⁺, 298 (50) [$730 - 102 - 330$]⁺; EIMS (70 eV): 331 (40), 207 (70) [$\text{M} - 102 - 347$]⁺, 206 (72), 169 (50), 109 (20), 85 (60), 57 (60), 43 (100); EIMS (12 eV): 207 (100), 206 (100), 169 (100), 147 (25), 109 (20), 85 (35), 57 (10), 43 (12).

Acid hydrolysis of 1. Compound **1** (5 mg) was dissolved in 1 ml 0.5 M H_2SO_4 , and the mixture refluxed for 1 hr. After neutralization and removal by filtration of the resinous products, the H_2O soln was concd. D-Glucose was identified by TLC (EtOAc–pyridine– H_2O 2:1:2) and GC of the silylated derivative.

2'-O-Acetyl patrinoside (2). Hydroscopic amorphous powder (97 mg). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 212; IR $\nu_{\text{max}}^{\text{film}}$ cm⁻¹: 3450, 1750, 1670, 1375,

1260, 1080, 765; ^1H NMR (250 MHz, CD_3OD , decoupling experiments), see Table 1; ^{13}C NMR (62.9 MHz, CD_3OD , DEPT technique for multiplicity), see Table 2. EIMS (70 eV), m/z (rel. int.): 402 (1) [$\text{M} - 102$]⁺, 384 [$\text{M} - 102 - 18$]⁺, 342 (18) [$\text{M} - 102 - 60$]⁺, 181 (20) [$\text{M} - 102 - 221$]⁺, 180 (20), 85 (80), 60 (48), 57 (54), 43 (100).

Acetylation of 2. Compound **2** was acetylated with pyridine– Ac_2O and the acetylated product purified by silica gel chromatography to give the hexa-acetate **2a** (67 mg), $\text{C}_{33}\text{H}_{46}\text{O}_{17}$, mp 129–131°. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1750, 1665, 1435, 1375, 1250, 1050, 770; ^1H NMR (250 MHz, CDCl_3), see Table 1. ^{13}C NMR (62.9 MHz, CDCl_3), see Table 2. CIMS (Et_2NH), m/z (rel. int.): 788 (82) [$\text{M} + 74$]⁺, 422 (100) [$348 + 74$]⁺, 356 (40) [$788 - 102 - 330$]⁺; EIMS (70 eV): 383 (4) [$\text{M} - 331$]⁺, 331 (20), 273 (10), 265 (1), 264 (10), 169 (70), 153 (20), 144 (20), 109 (25), 85 (70), 57 (50), 43 (100).

Acid hydrolysis of 2. 6 mg of compound **2** was refluxed with 1 ml 0.5 M H_2SO_4 for 1 hr. After neutralization and removal of the resinous products by filtration, the water phase was concentrated and D-glucose was identified by TLC and GC of the silylated derivative.

Acknowledgements—We are grateful to Prof. H. Inouye, (Fac. Pharm. Sci., Kyoto University, Japan), for providing us with an authentic sample of patrinoside hexa-acetate. This work was financially supported by the Committee of Science, Bulgaria.

REFERENCES

1. Stanic, G. and Petricic, J. (1979) *Farm. Glas* **35**, 231.
2. Godeau, R. P., Rossi, J. C. and Fouraste, I. (1977) *Phytochemistry* **16**, 604.
3. Bock, K., Jensen, S. R., Nielsen, B. J. and Norn, V. (1978) *Phytochemistry* **17**, 753.
4. Jensen, S. R., Nielsen, B. J. and Mikkelsen, C. B. (1979) *Tetrahedron Letters* 3261.
5. Hase, T. and Iwagawa, T. (1982) *Chemistry Letters* 13.
6. Hase, T., Takao, H. and Iwagawa, T. (1983) *Phytochemistry* **22**, 1977.
7. Hase, T., Iwagawa, T. and Dave, M. N. (1985) *Phytochemistry* **24**, 1323.
8. Jensen, S. R., Nielsen, B. J. and Norn, V. (1985) *Phytochemistry* **24**, 487.
9. Iwagawa, T. and Hase, T. (1986) *Phytochemistry* **25**, 1227.
10. Gering, B., Junior, P. and Wichtl, M. (1987) *Phytochemistry* **26**, 753.
11. Gering, B., Junior, P. and Wichtl, M. (1986) *Planta Med.* 356.
12. Bankova, V. S., Mollova, N. N. and Popov, S. S. (1986) *Org. Mass Spectrom.* **21**, 109.
13. Mollova, N., Handjieva, N. and Popov, S. (1986) *Biomed. Environ. Mass Spectrom.* **13**, 159.
14. Damtoft, S., Jensen, S. R. and Nielsen, B. J. (1981) *Phytochemistry* **20**, 2717.
15. Taguchi, H. and Endo, T. (1974) *Chem. Pharm. Bull.* **22**, 1935.